When a star dies in a supernova, one possible outcome is for the remains to become a neutron star. Inside a neutron star, the protons and electrons combine into uncharged neutrons. This substance is called neutron matter.
A small team of astrophysicists at the University of California, Los Angeles, working with colleagues from the University of Texas at Dallas and the University of Colorado, Boulder, has found evidence that Alfvén waves in space plasmas speed up ion beams, resulting in the creation of small-scale acoustic waves that in turn generate heat in the magnetosphere.
This week marks the centenary of the French physicist Louis de Broglie's doctoral thesis, which later earned him a Nobel prize for "his discovery of the wave nature of electrons." This discovery constitutes a central aspect of quantum mechanics, and it led to his famous "pilot wave" theory, which provides an alternative way to formulate the theory of quantum mechanics itself. However, de Broglie quickly denied his own theory. But for what reasons?
Vorticity, a measure of the local rotation or swirling motion in a fluid, has long been studied by physicists and mathematicians. The dynamics of vorticity is governed by the famed Navier-Stokes equations, which tell us that vorticity is produced by the passage of fluid past walls. Moreover, due to their internal resistance to being sheared, viscous fluids will diffuse the vorticity within them and so any persistent swirling motions will require a constant resupply of vorticity.
Scientists have a problem with cosmic rays—they produce too many muons at the Earth's surface. Cascades of muons are byproducts of high-energy cosmic rays as they collide with nuclei in the upper atmosphere, and scientists see more muons at Earth's surface than standard physics models predict.
Interference (excess noise) to quantum signals from sunlight has slowed down the creation of a global scale quantum communications network, but now physicists at Heriot-Watt University have proposed a way to tackle this "daylight noise"' issue, paving the way for all-day satellite transmission.
Physicists from the University of the Witwatersrand (Wits) have developed an innovative computing system using laser beams and everyday display technology, marking a significant leap forward in the quest for more powerful quantum computing solutions.
A team of engineers at the University of Science and Technology of China has developed a new way to code data onto a diamond with higher density than prior methods. In their paper published in the journal Nature Photonics, the group notes that such optical discs could hold data safely at room temperature for millions of years.
Since it was first demonstrated in the 1960s, spontaneous parametric down-conversion (SPDC) has been at the center of many quantum optics experiments that test the fundamental laws of physics in quantum mechanics, and in applications like quantum simulation, quantum cryptography, and quantum metrology.
Theoretical physicists have established a close connection between the two rapidly developing fields in theoretical physics, quantum information theory and non-invertible symmetries in particle and condensed matter theories, after proving that any non-invertible symmetry operation in theoretical physics is a quantum operation. The study was published in Physical Review Letters as an Editors' Suggestion on November 6.
In a study at the University of Twente, researchers discovered a way to scatter light in a special, symmetrical way using nanotechnology. This shows potential for future technologies such as anti-counterfeiting.
Perovskites, materials with a crystal structure that mirrors that of the mineral calcium titanate CaTiO₃, exhibit properties that are advantageous for developing various technologies. For instance, they have proved promising for designing photovoltaic (PV) systems and electronic devices.
Time is vital to the functioning of our everyday lives: from the watches on our wrists to the GPS systems in our phones. Communication systems, power grids, and financial transactions all rely on precision timing. Seconds are the vital units of measurement in timekeeping.
Over the past few years, some researchers have been working on alternative energy storage systems that leverage the principles of quantum mechanics. These systems, known as quantum batteries, could be more efficient and compact than conventional battery technologies, while also achieving faster charging times.
A small team of physicists at the University of Amsterdam has demonstrated the ability of 3D-printed particles to propel themselves across the surface of a fluid, given the right fuel. The group has posted a paper describing their particles on the arXiv preprint server.
---- End of list of PHYS ORG Physics Articles on this page 2 of 2 total pages ----